105 research outputs found

    Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution

    Get PDF
    Solution-processed semiconductors are in demand for presentandnext-generation optoelectronic technologies ranging from displaysto quantum light sources because of their scalability and ease ofintegration into devices with diverse form factors. One of the centralrequirements for semiconductors used in these applications is a narrowphotoluminescence (PL) line width. Narrow emission line widths areneeded to ensure both color and single-photon purity, raising thequestion of what design rules are needed to obtain narrow emissionfrom semiconductors made in solution. In this review, we first examinethe requirements for colloidal emitters for a variety of applicationsincluding light-emitting diodes, photodetectors, lasers, and quantuminformation science. Next, we will delve into the sources of spectralbroadening, including "homogeneous" broadening fromdynamical broadening mechanisms in single-particle spectra, heterogeneousbroadening from static structural differences in ensemble spectra,and spectral diffusion. Then, we compare the current state of theart in terms of emission line width for a variety of colloidal materialsincluding II-VI quantum dots (QDs) and nanoplatelets, III-VQDs, alloyed QDs, metal-halide perovskites including nanocrystalsand 2D structures, doped nanocrystals, and, finally, as a point ofcomparison, organic molecules. We end with some conclusions and connections,including an outline of promising paths forward

    First observation of the ( 4 He, 8 B) reaction

    Full text link
    The ( 4 He, 8 B) reaction on 27 Al and 66 Zn targets has been studied at E α =109MeV, the first observation of this reaction. Five groups appear in the first 4 MeV of excitation in the 23 Ne spectrum, with laboratory differential cross sections ranging from 35 to 384 nb/sr at θ lab =8 0 . Individual levels in 62 Co were not resolved in the exposure on the 66 Zn target. However, 8 B events were observed which are tentatively attributed to the 66 Zn(α, 8 B) 62 Co reaction, since contributions from plausible target contaminants can be eliminated on the basis of Q value. The observed yield at 8 0 indicates a laboratory cross section of 540 nb/sr summed over the first 4.6 MeV of excitation in 62 Co.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45824/1/10050_2005_Article_BF01547474.pd

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    Surface Doping Quantum Dots with Chemically Active Native Ligands: Controlling Valence without Ligand Exchange

    Get PDF
    One remaining challenge in the field of colloidal semiconductor nanocrystal quantum dots is learning to control the degree of functionalization or valence per nanocrystal. Current quantum dot surface modification strategies rely heavily on ligand exchange, which consists of replacing the nanocrystal\u27s native ligands with carboxylate- or amine-terminated thiols, usually added in excess. Removing the nanocrystal\u27s native ligands can cause etching and introduce surface defects, thus affecting the nanocrystal\u27s optical properties. More importantly, ligand exchange methods fail to control the extent of surface modification or number of functional groups introduced per nanocrystal. Here, we report a fundamentally new surface ligand modification or doping approach aimed at controlling the degree of functionalization or valence per nanocrystal while retaining the nanocrystal\u27s original colloidal and photostability. We show that surface-doped quantum dots capped with chemically active native ligands can be prepared directly from a mixture of ligands with similar chain lengths. Specifically, vinyl and azide-terminated carboxylic acid ligands survive the high temperatures needed for nanocrystal synthesis. The ratio between chemically active and inactive-terminated ligands is maintained on the nanocrystal surface, allowing to control the extent of surface modification by straightforward organic reactions. Using a combination of optical and structural characterization tools, including IR and 2D NMR, we show that carboxylates bind in a bidentate chelate fashion, forming a single monolayer of ligands that are perpendicular to the nanocrystal surface. Moreover, we show that mixtures of ligands with similar chain lengths homogeneously distribute themselves on the nanocrystal surface. We expect this new surface doping approach will be widely applicable to other nanocrystal compositions and morphologies, as well as to many specific applications in biology and materials science

    Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals

    Get PDF
    Colloidal semiconductor nanocrystals possess unique properties that are unmatched by other chromophores such as organic dyes or transition-metal complexes. These versatile building blocks have generated much scientific interest and found applications in bioimaging, tracking, lighting, lasing, photovoltaics, photocatalysis, thermoelectrics, and spintronics. Despite these advances, important challenges remain, notably how to produce semiconductor nanostructures with predetermined architecture, how to produce metastable semiconductor nanostructures that are hard to isolate by conventional syntheses, and how to control the degree of surface loading or valence per nanocrystal. Molecular chemists are very familiar with these issues and can use their expertise to help solve these challenges. In this Perspective, we present our group\u27s recent work on bottom-up molecular control of nanoscale composition and morphology, low-temperature photochemical routes to semiconductor heterostructures and metastable phases, solar-to-chemical energy conversion with semiconductor-based photocatalysts, and controlled surface modification of colloidal semiconductors that bypasses ligand exchange

    Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals

    Full text link
    corecore